Astronaut Salutes Nimoy From Orbit

International Space Station astronaut Terry Virts (@AstroTerry) tweeted this image of a Vulcan hand salute from orbit as a tribute to actor Leonard Nimoy, who died on Friday, Feb. 27, 2015. Nimoy played science officer Mr. Spock in the Star Trek series that served as an inspiration to generations of scientists, engineers and sci-fi fans around the world.

Cape Cod and Boston, Massachusetts, Nimoy’s home town, are visible through the station window. via NASA http://ift.tt/1Anq0nv

The Shuttle Enterprise

In 1976, NASA’s space shuttle Enterprise rolled out of the Palmdale manufacturing facilities and was greeted by NASA officials and cast members from the ‘Star Trek’ television series.

From left to right they are: NASA Administrator Dr. James D. Fletcher; DeForest Kelley, who portrayed Dr. “Bones” McCoy on the series; George Takei (Mr. Sulu); James Doohan (Chief Engineer Montgomery “Scotty” Scott); Nichelle Nichols (Lt. Uhura); Leonard Nimoy (Mr. Spock); series creator Gene Roddenberry;  U.S. Rep. Don Fuqua (D.-Fla.); and, Walter Koenig (Ensign Pavel Chekov).

NASA is mourning the passing today, Feb. 27, 2015, of actor Leonard Nimoy, most famous for his role as Star Trek’s Vulcan science officer Mr. Spock. The sci-fi classic served as an inspiration for many at NASA over the years, and Nimoy joined other cast members at special NASA events and worked to promote NASA missions, as in this 2007 video he narrated before the launch of the Dawn mission to the asteroid belt. Nimoy also was there for the 1976 rollout of the shuttle Enterprise, named for the show’s iconic spacecraft.

Image Credit: NASA via NASA http://ift.tt/1E02BhF

Hubble Images a Dusty Galaxy, Home to an Exploding Star

The galaxy pictured here is NGC 4424, located in the constellation of Virgo. It is not visible with the naked eye but has been captured here with the NASA/ESA Hubble Space Telescope.

Although it may not be obvious from this image, NGC 4424 is in fact a spiral galaxy. In this image it is seen more or less edge on, but from above, you would be able to see the arms of the galaxy wrapping around its center to give the characteristic spiral form.

In 2012, astronomers observed a supernova in NGC 4424 — a violent explosion marking the end of a star’s life. During a supernova explosion, a single star can often outshine an entire galaxy. However, the supernova in NGC 4424, dubbed SN 2012cg, cannot be seen here as the image was taken ten years prior to the explosion. Along the central region of the galaxy, clouds of dust block the light from distant stars and create dark patches.

To the left of NGC 4424 there are two bright objects in the frame. The brightest is another, smaller galaxy known as LEDA 213994 and the object closer to NGC 4424 is an anonymous star in our Milky Way.

European Space Agency

Credit: ESA/Hubble & NASA, Acknowledgement: Gilles Chapdelaine via NASA http://ift.tt/1AhhOFb

Feb. 26, 1966 Launch of Apollo-Saturn 201

Apollo-Saturn 201 (AS-201), the first Saturn IB launch vehicle developed by NASA’s Marshall Space Flight Center (MSFC), lifts off from Cape Canaveral, Florida, at 11:12 a.m. on Feb. 26, 1966. The AS-201 mission was an unmanned suborbital flight to test the Saturn 1B launch vehicle and the Apollo Command and Service Modules. This was the first flight of the S-IB and S-IVB stages, including the first flight test of the liquid-hydrogen/liquid oxygen-propelled J-2 engine in the S-IVB stage. During the thirty-seven minute flight, the vehicle reached an altitude of 303 miles and traveled 5,264 miles downrange.

Image Credit: NASA via NASA http://ift.tt/1LMExl9

Chicago in Winter

From the International Space Station (ISS), European Space Agency astronaut Samantha Cristoforetti took this photograph of Chicago and posted it to social media on Feb. 19, 2015. She wrote, “How do you like #Chicago dressed for winter?”

Crewmembers on the space station photograph the Earth from their unique point of view located 200 miles above the surface as part of the Crew Earth Observations program. Photographs record how the planet is changing over time, from human-caused changes like urban growth and reservoir construction, to natural dynamic events such as hurricanes, floods and volcanic eruptions. Astronauts have used hand-held cameras to photograph the Earth for more than 40 years, beginning with the Mercury missions in the early 1960s. The ISS maintains an altitude between 220 – 286 miles (354 – 460 km) above the Earth, and an orbital inclination of 51.6˚, providing an excellent stage for observing most populated areas of the world.

Image Credit: NASA/ESA/Samantha Cristoforetti via NASA http://ift.tt/1wdNNpq

Curiosity Self-Portrait at ‘Mojave’ Site on Mount Sharp

This self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the “Mojave” site, where its drill collected the mission’s second taste of Mount Sharp.

The scene combines dozens of images taken during January 2015 by the Mars Hand Lens Imager (MAHLI) camera at the end of the rover’s robotic arm.  The pale “Pahrump Hills” outcrop surrounds the rover, and the upper portion of Mount Sharp is visible on the horizon.  Darker ground at upper right and lower left holds ripples of wind-blown sand and dust.

An annotated version, Fig. A, labels several of the sites Curiosity has investigated during three passes up the Pahrump Hills outcrop examining the outcrop at increasing levels of detail. The rover used its sample-collecting drill at “Confidence Hills” as well as at Mojave, and in late February was assessing “Telegraph Peak” as a third drilling site.

The view does not include the rover’s robotic arm.  Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic’s component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites “Rock Nest” (http://ift.tt/12SNjYb), “John Klein” (http://ift.tt/1iFLQAx) and “Windjana” (http://ift.tt/1vwpWGg).

Curiosity used its drill to collect a sample of rock powder from target “Mojave 2” at this site on Jan. 31, 2015.  The full-depth, sample-collection hole and the shallower preparation test hole beside it are visible in front of the rover in this self-portrait, and in more detail at http://ift.tt/1DDxW7C .  The Mojave site is in the “Pink Cliffs” portion of the Pahrump Hills outcrop. The outcrop is an exposure of the Murray formation, which forms the basal geological layer of Mount Sharp.  Views of Pahrump Hills from other angles are at http://ift.tt/13Erb9G and the inset at http://ift.tt/1EO3HMa .

The frames showing the rover in this mosaic were taken during the 868th Martian day, or sol, of Curiosity’s work on Mars (Jan. 14, 2015).  Additional frames around the edges to extend the amount of terrain included in the scene were taken on Sol 882 (Jan. 29, 2015).  The frames showing the drill holes were taken on Sol 884 (Jan. 31, 2015). 

For scale, the rover’s wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.  The drilled holes in the rock are 0.63 inch (1.6 centimeters) in diameter.

MAHLI was built by Malin Space Science Systems, San Diego. NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project’s Curiosity rover.

More information about Curiosity is online at http://www.nasa.gov/msl and http://ift.tt/wIaLrq.

Credit: NASA/JPL-Caltech/MSSS via NASA http://ift.tt/1EO3EQg

Astronaut Barry Wilmore on the First of Three Spacewalks

NASA astronaut Barry Wilmore works outside the International Space Station on the first of three spacewalks preparing the station for future arrivals by U.S. commercial crew spacecraft, Saturday, Feb. 21, 2015. Fellow spacewalker Terry Virts, seen reflected in the visor, took this photograph and shared it on social media.

The spacewalks are designed to lay cables along the forward end of the U.S. segment to bring power and communication to two International Docking Adapters slated to arrive later this year. The new docking ports will welcome U.S. commercial spacecraft launching from Florida beginning in 2017, permitting the standard station crew size to grow from six to seven and potentially double the amount of crew time devoted to research.

The second and third spacewalks are planned for Wednesday, Feb. 25 and Sunday, March 1, with Wilmore and Virts participating in all three.

Image Credit: NASA/Terry Virts via NASA http://ift.tt/1Be2FLU

John Glenn During the Mercury-Atlas 6 Spaceflight

On Feb. 20, 1962, astronaut John H. Glenn, Jr., became the first American to orbit Earth. Launched from Cape Canaveral Launch Complex 14, Glenn’s Mercury-Atlas 6 “Friendship 7” spacecraft completed a successful three-orbit mission, reaching a maximum altitude (apogee) of approximately 162 statute miles and an orbital velocity of approximately 17,500 miles per hour. The flight lasted a total of 4 hours, 55 minutes, and 23 seconds before the spacecraft splashed down in the ocean. This photograph of John Glenn during the Mercury-Atlas 6 spaceflight was taken by a camera onboard the spacecraft.

Image Credit: NASA via NASA http://ift.tt/1CSKR3Z

Magnetospheric Multiscale Observatories Processed for Launch

NASA’s Magnetospheric Multiscale (MMS) observatories are processed for launch in a clean room at the Astrotech Space Operations facility in Titusville, Florida. MMS is an unprecedented NASA mission to study the mystery of how magnetic fields around Earth connect and disconnect, explosively releasing energy via a process known as magnetic reconnection. MMS consists of four identical spacecraft that work together to provide the first three-dimensional view of this fundamental process, which occurs throughout the universe.

The mission observes reconnection directly in Earth’s protective magnetic space environment, the magnetosphere. By studying reconnection in this local, natural laboratory, MMS helps us understand reconnection elsewhere as well, such as in the atmosphere of the sun and other stars, in the vicinity of black holes and neutron stars, and at the boundary between our solar system’s heliosphere and interstellar space.

MMS is a NASA mission led by the Goddard Space Flight Center. The instrument payload science team consists of researchers from a number of institutions and is led by the Southwest Research Institute. Launch of the four identical observatories aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is managed by Kennedy Space Center’s Launch Services Program. Liftoff is currently targeted for 10:44 p.m. EDT on March 12.

Image Credit: NASA/Ben Smegelsky via NASA http://ift.tt/17hsNrB